STICHTING MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 195422 r

On an intrinsic connexion in an \mathbf{X}_{2n} with

an almost Hermitian structure

J.A. Schouten and K. Yano

Reprinted from

Proceedings of the KNAW, Series A, <u>58</u>(1955)

Indagationes Mathematicae, <u>17</u>(1955), p 1-9

1955

KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN - AMSTERDAM Reprinted from Proceedings, Series A, 58, No. 1 and Indag. Math., d7, No. 1 1955

MATHEMATICS

ON AN INTRINSIC CONNEXION IN AN X_{2n} WIFH-AN N C ALMOST HERMITIAN STRUCTURE

BY

J. A. SCHOUTEN AND K. YANO 1955

(Communicated at the meeting of November 27, 1954)

In a previous paper 1) one of us has derived three affine connexions in an almost Hermitian space that were characterized by the vanishing of $\nabla_i F_{ih}$ and by certain conditions imposed on the tensor $T_{ji}^{\cdot \cdot \cdot h} = \Gamma_{ji}^h - \Gamma_{ji}^h$ where the Γ_{ji}^h are the parameters of the Riemannian connexion belonging to g_{ih} . Also a geometric interpretation of these connexions was given for the case where the space is complex. We prove in this paper that there is one and only one metric connexion satisfying $\nabla_i F_{ih} = 0$ and admitting infinitesimal parallelograms in the real invariant 2-directions. Also the geometric interpretations of the three former connexions will be given for the general case.

§ 1. The X_{2n} with an almost complex structure

If in an X_{2n} of class C^r ; $r \ge 2$ a mixed tensorfield of valence 2 is given and if the components of this field with respect to a system (h) of real coordinates ξ^h ; h = 1, ..., 2n, allowable in some neighbourhood, are real and of class C^{r-1} and satisfy the conditions

$$F_i^{ij} F_j^{ih} = -A_i^h$$

then the X_{2n} is said to possess an almost complex structure. Such an X_{2n} has only real points.

From (1.1) it follows that F_i^h has n eigenvalues +i and n eigenvalues -i and that at each point there exists at least one local coordinate system with respect to which the matrix of F takes the diagonal form with n values +i and n values -i in the diagonal. But this means that in X_{2n} there must exist at least one (in general anholonomic) coordinate system (α) ; $\alpha = 1, ..., n, \overline{1}, ..., \overline{n}$ with basis vectors e^h and e_i such that

$$(1.2) F_i^h = i \stackrel{\kappa}{\stackrel{e}{e}}_i \stackrel{e}{e}^h - i \stackrel{\bar{\bar{e}}}{\stackrel{e}{e}}_i \stackrel{e}{\stackrel{h}}{\stackrel{\bar{z}}{=}} ; \quad \varkappa = 1, ..., n \quad ; \quad \bar{z} = \overline{1}, ..., \bar{n}.$$

The basis vectors are non real vectors in the local E_{2n} . In this system the expression

(1.3)
$$\alpha) \quad (d\xi)^{\alpha} \stackrel{\text{def}}{=} A_h^{\alpha} d\xi^h; \quad \beta) \quad A_h^{\alpha} \stackrel{\text{def}}{=} e_h^{\alpha} \stackrel{\theta}{=} e_h^{\alpha} \stackrel{*}{=} e_h^{\alpha}$$

is in general not a complete differential. The A_h^{α} are not real.

¹⁾ K. Yano, On three remarkable affine connexions in almost Hermitian spaces, Proc. Kon. Ned. Akad. Amsterdam, A 58, 24-32 (1955).

If we write 1)

$$(1.4) B_i^h \stackrel{\text{def}}{=} \stackrel{\times}{e_i} e_i^h \quad ; \quad C_i^h \stackrel{\overline{e}}{=} \stackrel{\overline{e}}{e_i} e_i^h$$

we have

$$(1.5) B_j^h B_i^j = B_i^h ; B_j^h C_i^j = 0 ; C_j^h B_i^j = 0 ; C_j^h C_i^j = C_i^h$$

$$A_{i}^{h} = B_{i}^{h} + C_{i}^{h} \quad ; \quad F_{i}^{h} = iB_{i}^{h} - iC_{i}^{h}$$

and

$$\begin{cases}
B_{\lambda}^{\varkappa} \stackrel{*}{=} \delta_{\lambda}^{\varkappa} ; & B_{\lambda}^{\overline{\varkappa}} \stackrel{*}{=} 0 ; & B_{\overline{\lambda}}^{\varkappa} \stackrel{*}{=} 0 ; & B_{\overline{\lambda}}^{\overline{\varkappa}} \stackrel{*}{=} 0 \\
C_{\lambda}^{\varkappa} \stackrel{*}{=} 0 ; & C_{\lambda}^{\overline{\varkappa}} \stackrel{*}{=} 0 ; & C_{\lambda}^{\overline{\varkappa}} \stackrel{*}{=} 0 ; & C_{\overline{\lambda}}^{\overline{\varkappa}} \stackrel{*}{=} \delta_{\overline{\lambda}}^{\overline{\varkappa}}
\end{cases}$$

The e^h span a non real E_n in the local E_{2n} and the e^h span another non

real E_n that has no direction in common with the first. These E_n 's are fixed by the tensor $F_i{}^h$ and conversely this tensor is determined uniquely by them 2). We call them the *invariant* E_n 's of $F_i{}^h$. Further there exists in every local E_{2n} a set of ∞^{2n-2} planes that are in an invariant way connected with $F_i{}^h$. Let u^h be an arbitrary real vector and let v^h be its transform by F, $v^h = u^i F_i{}^h$. Then $-u^h$ is the transform of v^h and the vectors u^h and v^h span such an invariant plane. We call these planes the *invariant* E_2 's of $F_i{}^h$. At every point the infinitesimal affine transformation $A_i^h + F_i{}^h dt$ generates a 1-parameter group of real central affine transformations that leave all these planes invariant and the sections of each plane with the two invariant E_n 's are the directions that are invariant for the transformations of this group.

We consider now the system of n homogeneous partial differential equations

(1.8)
$$e^{j} \partial_{j} f(\xi^{h}) = 0 \quad ; \quad \lambda = 1, ..., n$$

or the adjoint system of n total differential equations

In the case that the X_{2n} is of the class C^{ω} and that also the F_i^{h} are of the class C^{ω} we can discuss the integrability of these systems, that can also be written in the forms

(1.10)
$$\alpha) \quad B_{\lambda}^{i} \, \delta_{j} \, f(\xi^{h}) = 0 \quad \text{or} \quad \beta) \quad A_{\lambda}^{i} \, \delta_{j} \, f(\xi^{h}) = 0$$

(1.11)
$$\alpha) \quad C_{j}^{\overline{\lambda}} d\xi^{j} = 0 \qquad \text{or} \quad \beta) \quad A_{j}^{\overline{\lambda}} d\xi^{j} = 0.$$

The integrability conditions of (1.10β) or (1.11β) are

$$\Omega_{\mu\lambda}^{\tilde{\varkappa}} \stackrel{\text{def}}{=} A_{\mu}^{i} A_{\lambda}^{i} \delta_{[j} A_{i]}^{\tilde{\varkappa}} = 0$$

¹⁾ Cf. J. A. Schouten, Ricci Calculus 1954 (here referred to as R. C.).

²⁾ But for the sign.

where $\Omega_{\mu\lambda}^{\bar{x}}$ are some of the components $\Omega_{\gamma\beta}^{\alpha}$ of the object of anholonomity with respect to the coordinate system (α). If these conditions are satisfied the systems (1.8, 10) and (1.9, 11) are complete and there exist n independent solutions. In the same way the equations

$$(1.13) A_{\frac{1}{2}} \partial_j f(\xi^h) = 0$$

or

$$A_i^{\lambda} d\xi^j = 0$$

form a complete system if and only if $\Omega_{\overline{\mu}\overline{\lambda}}^{\kappa}=0$. If both conditions are satisfied and if we denote the solutions by $\xi^{\kappa'}$ and $\xi^{\kappa'}$ respectively we get for the intermediate components of B and C

(1.15)
$$\begin{cases} B_{\lambda}^{i} \, \delta_{j} \, \xi^{\bar{\lambda}'} = 0 & ; \quad C_{\bar{\lambda}}^{i} \, \delta_{j} \, \xi^{\lambda'} = 0 \\ C_{j}^{\bar{\lambda}} \, A_{\lambda'}^{i} \, d\xi^{\lambda'} = 0 & ; \quad B_{j}^{\lambda} \, A_{\bar{\lambda}'}^{i} \, d\xi^{\bar{\lambda}'} = 0. \end{cases}$$

or, introducing $\xi^{\kappa'}$, $\xi^{\bar{\kappa}'}$ as a holonomic coordinate system (α')

(1.16)
$$\begin{cases} e^{j} e_{j}^{2} = 0 & ; & e^{j} e_{j}^{2} = 0 \\ \frac{1}{\lambda} e_{j} e^{j} = 0 & ; & e_{j} e^{j} = 0 \\ e_{i} e^{j} = 0 & ; & e_{j} e^{j} = 0 \end{cases}$$

from which we see immediately that the $e^h_i(e_i)$ depend only on the $e^h_i(e_i)$

and the e^h (e_i) only on the e^h (e_i) . But this is also intuitively clear because

the $e^h_{\lambda'}$ must span at every point one invariant E_n and the $e^h_{\bar{\lambda}}$ the other E_n .

For (α) we could now choose one of the holonomic coordinate systems just derived. Then all components $\Omega^{\alpha}_{\gamma\beta}$ would vanish. If we have two different sets of solutions and denote them by ξ^{μ} , $\xi^{\bar{\mu}}$ and $\xi^{\mu\prime}$, $\xi^{\bar{\mu}\prime}$ we have

(1.17)
$$\begin{cases} d\xi^{\varkappa} = B_{\varkappa'}^{\varkappa} d\xi^{\varkappa'} + B_{\widetilde{\varkappa}'}^{\varkappa} d\xi^{\widetilde{\varkappa}'} & ; \quad d\xi^{\widetilde{\varkappa}} = C_{\varkappa'}^{\widetilde{\varkappa}} d\xi^{\varkappa'} + C_{\widetilde{\varkappa}'}^{\widetilde{\varkappa}} d\xi^{\widetilde{\varkappa}'} \\ = B_{\varkappa'}^{\varkappa} d\xi^{\varkappa'} & = C_{\widetilde{\varkappa}'}^{\widetilde{\varkappa}} d\xi^{\widetilde{\varkappa}'} \end{cases}$$

because $B_{\kappa'}^z$ and $C_{\kappa}^{\bar{\kappa}}$ vanish. But this means that the $\xi^{\kappa'}$ are analytic functions of the ξ^{κ} and that the ξ^{κ} are complex coordinates in an ordinary complex X_n from which the original X_{2n} is the auxiliary X_{2n}^{-1}). It is also said that the X_{2n} has a complex structure or that its structure is induced by an ordinary complex X_n . Hence, as was proved first by Eckmann and Frölicher ²) an almost complex structure in X_{2n} of class C^{ω} is induced

⁾ Cf. for an elaborate treatment of the quantities in an ordinary complex X_n and its auxiliary X_{2n} , R.C. VIII § 2–§ 8.

²⁾ Sur l'intégrabilité des structures presque complexes, C.R. 232, 2284–2286 (1951).

by an ordinary X_n if and only if (1.10) (or 1.11) forms a complete system, that is if $\Omega_{\mu\lambda}^{\mathbb{Z}}$ and $\Omega_{\mu\lambda}^{\mathbb{Z}}$ vanish.

In the ordinary complex X_n we have tensors of the first and of the second kind with all indices without a bar or all with a bar respectively. Also we have hybrid quantities, that are quantities with different kinds of indices. To an ordinary tensor for instance $P^*_{.\lambda\mu}$ there belongs always the complex conjugate tensor of the second kind $P^{\bar{n}}_{.\lambda\mu}$ and in the auxiliary X_{2n} these quantities form together a quantity with $2n^3$ components $P^*_{.\lambda\mu}$, $P^{\bar{n}}_{.\lambda\mu}$ with respect to (α) . This quantity has the special property that at each point one part $P^*_{.\lambda\mu}$ lies in one invariant E_n and the other part in the other E_n . But a general tensor of X_{2n} for instance Q^{**}_{ii} has with respect to (α) the components $Q^{**}_{i\lambda}$, $Q^{**}_{\mu\lambda}$, and so it corresponds to one quantity of the first kind, one of the second kind and six hybrid quantities in X_n . If a quantity of X_{2n} lies wholly in the invariant E_n 's we call it pure and in every other case hybrid. For instance A^h_i and F^*_i are pure tensors. Of course every quantity can be split up into a pure and a hybrid part by using B^h_i and C^h_i . This is very useful, especially for the case of valence 2. Because

$$A_{ii}^{lk} = B_{ii}^{lk} + B_i^l C_i^k + C_i^l B_i^k + C_{ii}^{lk}$$

the operators

$$(1.19) O_{ji}^{lk} = B_{ji}^{lk} + C_{ji}^{lk} \quad ; \quad 'O_{ji}^{lk} = B_j^l C_i^k + C_j^l B_i^k$$

give the splitting up of every quantity of valence 2 and we have the formulae

(1.20)
$$\begin{cases} O = BB + CC & ; 'O = BC + CB \\ OO = O & ; 'O'O = 0 & ; 'OO = 0 \end{cases} ; 'O'O = 'O'$$

and

(1.21)
$$O = \frac{1}{2}(AA - FF)$$
 ; $O = \frac{1}{2}(AA + FF)$

in an abridged notation. Pure quantities of a valence higher than 2 can be treated in the same way. For instance P_{jin} is pure if and only if it is invariant for transvection with BBB+CCC and then transvection with every other combination, for instance BCB, gives zero and

$$(1.22) P_{iih} = B_{iih}^{\mu\lambda\kappa} P_{\mu\lambda\kappa} + C_{iih}^{\overline{\mu}\overline{\lambda}\overline{\kappa}} P_{\overline{\mu}\overline{\lambda}\overline{\kappa}}$$

and for instance

$$(1.23) P_{jik} B_h^k = B_{jih}^{\mu\lambda\nu} P_{\mu\lambda\nu} ; P_{\mu\lambda\nu} = B_{\mu\lambda\nu}^{jih} P_{jih}.$$

The condition of integrability can be put in another form. From (1.12) we get

(1.24a)
$$\begin{cases} \Omega_{\mu\lambda}^{\bar{z}} = B_{\mu\lambda}^{j\,i} \, \delta_{[j} \, C_{i]}^{\bar{z}} = B_{\mu\lambda}^{j\,i} \, C_{h}^{\bar{z}} \, \delta_{[j} \, C_{i]}^{h} = \\ = \frac{1}{2} i \, B_{\mu\lambda}^{j\,i} \, C_{h}^{\bar{z}} \, \delta_{[j} \, F_{i]}^{*\,h}; \end{cases}$$

$$(1.24b) \Omega_{\mu}^{\underline{\varkappa}} = -\frac{1}{2} i C_{\mu}^{\underline{i}} B_{h}^{\varkappa} \partial_{[j} F_{i]}^{h}$$

or

$$\Omega_{\mu\lambda}^{\bar{\nu}} C_{\bar{\tau}}^{h} = \frac{1}{2} i B_{\mu\lambda}^{ii} \delta_{[i]} F_{i]}^{h};$$

(1.25b)
$$\Omega_{\overline{\mu}\overline{\lambda}}^{\underline{\kappa}} B_{\kappa}^{h} = -\frac{1}{2} i C_{\underline{\mu}\overline{\lambda}}^{\underline{i}} \delta_{[i]} F_{i]}^{h}.$$

Now, if P_i^h is any tensor, it was proved by Nijenhuis¹) that the expression

$$(1.26) 2P_{i}^{\cdot l} (\delta_{|l|} P_{i|}^{\cdot h} - \delta_{i|} P_{i|}^{\cdot h})$$

is also a tensor. If we denote the Nijenhuis tensor of F_{i}^{h} by N_{i}^{h} we get

$$(1.27) N_{ii}^{\cdot \cdot k} F_k^{\cdot h} = 4 O_{ii}^{lk} \delta_{ll} F_{kl}^{\cdot \cdot h}$$

and this proves that $N_{ii}^{\cdot \cdot h}$ is pure in the indices ji. From (1.27) we get

$$N_{ji}^{\cdot,h} = 8 \, \Omega_{\mu\lambda}^{\overline{\lambda}} \, B_{ji}^{\mu\lambda} \, C_{\overline{\lambda}}^{h} + 8 \, \Omega_{\overline{\mu}\overline{\lambda}}^{\overline{\lambda}} \, C_{ji}^{\overline{\mu}\overline{\lambda}} \, B_{\lambda}^{h}$$

or in another form

(1.29)
$$\begin{cases} \alpha & N_{\mu\lambda}^{\cdot, \star} \stackrel{*}{=} 0; \text{ conj.} \\ \beta & N_{\mu\lambda}^{\cdot, \star} \stackrel{*}{=} 0; \text{ conj.} \\ \gamma & N_{\mu\lambda}^{\cdot, \star} \stackrel{*}{=} 8 \Omega_{\mu\lambda}^{\bar{\star}}; \text{ conj.} \end{cases}$$

from which we see that $N_{ji}^{\cdot,h}$ is hybrid in the indices ih. As the only non vanishing components of $N_{ji}^{\cdot,h}$ are equal to $8Q_{\mu\lambda}^{\varkappa}$ and $8Q_{\mu\overline{\lambda}}^{\varkappa}$ we get the theorem of ECRMANN and Frölicher in the form:

An almost complex X_{2n} of class C^{ω} is complex if and only if the Nijenhuis tensor of F_i^{h} vanishes.

In the analytic case the vanishing of $N_{ji}^{\cdot,\cdot}h$ means that the two E_n -fields are building (complex) X_n 's. But in the general case such an interpretation is impossible because there are no complex points in X_{2n} and therefore only real directions. In order to find a geometric interpretation in the general case we consider a vectorfield w_i and its rotation $w_{ji} = 2 \delta_{ij} w_{il}$. Let $u_i = F_i h w_h$ be its transform by F and u_{ji} the rotation of u_i . Then it is easy to prove that

$$(1.30) 2Ow_{ii} = N_{i}^{ih} w_h + 2F_{i}^{h} Ou_{ih}$$

and this proves:

A vectorfield with a hybrid rotation is always transformed by F into a vectorfield whose rotation is also hybrid, if and only if $N_{ji}^{\cdot \cdot \cdot h} = 0$

and

 $N_{ji}^{\cdot \cdot \cdot h}$ vanishes if and only if there exist m vectorfields such that their rotations and the rotations of their transforms by F are hybrid and if among these 2m vectorfields there are 2n linearly independent ones.

¹) X_{n-1} -forming sets of eigenvectors, Proc. Kon. Ned. Akad. v. Wet. Amsterdam, A 54, 200–212 (1951).

According to the first theorem a gradientfield must have a transform with a hybrid rotation. But this rotation need not be zero.

§ 2. An intrinsic connexion in an almost Hermitian space

An almost complex X_{2n} is said to be almost Hermitian if a symmetric tensor g_{in} of rank 2n and class C^{r-1} is introduced satisfying the condition

$$(2.1) F_i^{ik} F_h^{ij} g_{kj} = g_{ih}.$$

Using g_{ih} for raising and lowering of indices we see that F_{ih} is a bivector. A general bivector in a 2n-dimensional flat metric space can be split up into n blades 1) and these blades are uniquely determined if the eigenvalues of the bivector are all different. But in the case of F_{ih} the blades are undetermined and for each of the invariant E_2 's mentioned in § 1 the splitting up can be done in such a way that one blade just lies in this E_2 . By g_{ih} each E_2 is now a real R_2 and the invariant E_n 's are lying on the nullcone of g_{ih} and they cut each invariant R_2 in its null directions. The transformations of the 1-parameter group mentioned in § 1 are now rotations.

We wish to establish now a connexion satisfying the conditions

a. the connexion is metric:

b. the two E_n -fields are invariant:

$$(2.3) V_i F_{ih} = 0$$

c. in each invariant R_2 there exist infinitesimal parallelograms.

First we use the anholonomic coordinatesystem (α). We remark that g_{ih} and F_{ih} are hybrid and that (stars being dropped)

$$\left\{ \begin{array}{ll} F_{\lambda\overline{\star}}=i\;g_{\lambda\overline{\star}}; & \mathrm{conj.} \\ F_{\lambda\star}=0\;; & \mathrm{conj.} \end{array} \right.$$

From this we see that N_{iih} is pure in all indices because

(2.5)
$$\begin{cases} N_{\mu\lambda\bar{\kappa}} = 0; & \text{conj.} \\ N_{\mu\lambda\kappa} = 8 \, \Omega_{\mu\lambda}^{\bar{\kappa}} \, g_{\kappa\bar{\kappa}}; & \text{conj.} \\ N_{\mu\bar{\lambda}\bar{\kappa}} = 0; & \text{conj.} \end{cases}$$

The second condition expresses that every direction in a local E_n has to remain in the local E_n after parallel displacement, hence this condition is equivalent with

(2.6)
$$\alpha$$
) $\Gamma_{\mu\lambda}^{\overline{\lambda}} = 0$; β) $\Gamma_{\mu\overline{\lambda}}^{\kappa} = 0$; conj.

The third condition is equivalent with

(2,7)
$$S_{\mu\bar{\lambda}}^{\cdot \cdot \varkappa} = 0; \quad S_{\bar{\mu}\lambda}^{\cdot \cdot \varkappa} = 0; \text{ conj.}$$

¹⁾ Cf. R.C., p. 46.

but because of the well known formula 1)

$$S_{\gamma\beta}^{\cdot\cdot\alpha} = \Gamma_{[\gamma\beta]}^{\alpha} + \Omega_{\gamma\beta}^{\alpha}; \text{ conj.}$$

this leads to

(2.9)
$$\Gamma_{\mu\lambda}^{\varkappa} = -2 \Omega_{\mu\lambda}^{\varkappa}; \text{ conj.}$$

The first condition leads to the well known formula 2)

(2.10)
$$\Gamma_{\gamma\beta}^{\alpha} = \Gamma_{\gamma\beta}^{\alpha} + S_{\gamma\beta}^{\alpha} - S_{\gamma,\beta}^{\alpha} - S_{\beta,\gamma}^{\alpha}; \text{ conj.}$$

and writing out this equation we get

(2.11)
$$\begin{cases}
\alpha) & \Gamma_{\mu\lambda}^{\varkappa} = \overset{0}{\Gamma}_{\mu\lambda}^{\varkappa} + S_{\mu\lambda}^{"\varkappa}; \text{ conj.} \\
\beta) & 0 = \Gamma_{\mu\overline{\lambda}}^{\varkappa} = \overset{0}{\Gamma}_{\mu\overline{\lambda}}^{\varkappa} - S_{\overline{\lambda}}^{;\overline{\mu}} g^{\overline{\varkappa}\varkappa} g_{\mu\overline{\mu}}; \text{ conj.} \\
\gamma) & -2 \Omega_{\overline{\mu}\lambda}^{\varkappa} = \Gamma_{\mu\lambda}^{\varkappa} = \overset{0}{\Gamma}_{\mu\lambda}^{\varkappa} - S_{\overline{\mu}\overline{\kappa}}^{;\overline{\lambda}} g^{\overline{\varkappa}\varkappa} g_{\lambda\overline{\lambda}}; \text{ conj.} \\
\delta) & 0 = \Gamma_{\mu\lambda}^{\overline{\varkappa}} = \overset{0}{\Gamma}_{\mu\lambda}^{\overline{\varkappa}} + (S_{\mu\lambda\varkappa} - S_{\mu\varkappa\lambda} - S_{\lambda\varkappa\mu}) g^{\overline{\varkappa}\varkappa}; \text{ conj.}
\end{cases}$$

From these equations, (2.11β) and (2.11γ) are equivalent because of (2.8), and from them we derive

$$S_{\mu\lambda}^{\dots} = \stackrel{0}{\Gamma}_{\bar{\kappa}\mu}^{\bar{\lambda}} g^{\bar{\kappa}\kappa} g_{\lambda\bar{\lambda}}; \quad \text{conj.}$$

Hence, in combination with (2.11α)

(2.14)
$$\boxed{\Gamma_{\mu\lambda}^{\varkappa} = \overset{0}{\Gamma}_{\mu\lambda}^{\varkappa} + \overset{0}{\Gamma}_{\overline{\lambda}\mu}^{\overline{\lambda}} g^{\overline{\nu}\varkappa} g_{\lambda\overline{\lambda}}}; \text{ conj.}$$

The connexion is now determined by (2.6) and (2.14). From (2.11δ) we get

$$S_{\mu\lambda}^{\cdot\cdot\bar{\nu}} = -\stackrel{0}{\Gamma}_{[\mu\lambda]}^{\bar{\nu}}; \text{ conj.}$$

but from (1.29γ) and (2.8) it follows that

$$(2.16) S_{\mu\lambda}^{\cdot,\bar{\varkappa}} = \Omega_{\mu\lambda}^{\bar{\varkappa}} = \frac{1}{8} N_{\mu\lambda}^{\cdot,\bar{\varkappa}}; \text{ conj.}$$

because the Riemannian connexion is symmetric. Hence

(2.17)
$$\tilde{\Gamma}_{[\mu\lambda]}^{\tilde{\nu}} = -\tilde{\Omega}_{\mu\lambda}^{\tilde{\nu}} \quad ^{3}) ; \quad \text{conj.}$$

Now using the holonomic coordinates (h) we get from the first condition for $T_{ji}^{\cdot \cdot h} = \Gamma_{ji}^h - \Gamma_{ji}^h$ the equivalent

$$(2.18) T_{jih} = S_{jih} - S_{jhi} - S_{ihj}.$$

¹⁾ Cf. for instance R.C., p. 169.

²) Cf. for instance R.C., p. 132. $\Gamma^{\alpha}_{\gamma\beta}$ = param. Riem. connexion. ³) This is in accordance with R.C. (3.6 d) on p. 396 and (9.8) on p. 170.

The second condition is equivalent to

(2.19)
$$\begin{cases} 0 = V_{j} F_{ih} = \overset{0}{V_{j}} F_{ih} - (S_{jik} - S_{jki} - S_{ikj}) F_{.h}^{k} - (S_{jhk} - S_{jkh} - S_{hkj}) F_{i}^{k} \end{cases}$$

hence

$$\begin{cases} 0 = F_l^{,h} \nabla_j F_{ih} = F_l^{,h} \nabla_j F_{ih} - 2 O_{il}^{kh} S_{jkh} + \\ + 2 O_{li}^{kh} S_{jhk} + 2 O_{il}^{kh} S_{khj}. \end{cases}$$

The third condition is satisfied if and only if S_{ji}^{ih} is pure in ji because in every invariant E_2 there lies one vector of each invariant E_n . Hence

$$(2.21) O_{il}^{kh} S_{khj} = S_{ilj}.$$

Now the expression (1.26) for N_{ii} can also be written in the form

$$(2.22) N_{jih} = 2 F_{ij}^{i} (\stackrel{0}{V}_{|l|} F_{ijh} - \stackrel{0}{V}_{ij} F_{lh})$$

and from this follows the identity

$$(2.23) N_{jih} = 8 O_{ih}^{ml} S_{jml}.$$

Hence from (2.20) and (2.23) and from the fact that N_{jih} is pure we get

$$(2.24) S_{iih} = \frac{1}{2} (\stackrel{0}{V}_{h} F_{ii}) F_{i}^{"} - \frac{1}{4} N_{h[ii]}$$

and consequently

$$(2.25) T_{jih} = \frac{1}{2} (\stackrel{0}{V}_{h} F_{lj}) F_{i}^{:l} - \frac{1}{2} (\stackrel{0}{V}_{i} F_{lj}) F_{h}^{:l} - \frac{1}{2} (\stackrel{0}{V}_{j} F_{li}) F_{h}^{:l} - \frac{1}{4} N_{hij}$$

by which equation the connexion is determined. For the analytic case with $N_{ii}^{\cdot \cdot \cdot h} = 0$ the connexion is of course identical with the unitary connexion in a \widetilde{U}_n^{-1}). For the pseudo-Kählerian case it is Riemannian.

§ 3. On the geometric interpretation of the three other connexions

1. Take an arbitrary contravariant vector u^h . We can associate with this contravariant vector a covariant vector defined by $F_{ih}u^h$. The hyperplane representing the covariant vector $F_{ih}u^h$ contains the direction representing the contravariant vector u^h . So this is a so-called null-system.

Now we transport the contravariant vector u^h parallelly with respect to the Riemannian connexion from the point ξ^h to the point $\xi^h + d\xi^h$. Then we get at $\xi^h + d\xi^h$

$$(3.1) u^h - d\xi^i \left(\begin{smallmatrix} h \\ ii \end{smallmatrix} \right) u^i.$$

¹⁾ R.C. p. 395 ff.

Next we transport the covariant vector $F_{ih}u^h$ parallelly with respect to the affine connexion Γ^h_{ji} from the point ξ^h to $\xi^h + d\xi^h$. Then we get at $\xi^h + d\xi^h$

$$F_{ih} u^h - d\xi^i \Gamma^l_{ii} F_{lh} u^h$$

or

$$(3.2) F_{ih} u^h - d\xi^j \left(\left\{ \begin{smallmatrix} l \\ ji \end{smallmatrix} \right\} + T_{ji}^{\cdots l} \right) F_{lh} u^h.$$

We assume that the hyperplane representing (3.2) contains the direction representing (3.1) for any vector u^h and for any displacement $d\xi^h$. This condition can be expressed as

$$(3.3) T_{ii}^{:l} F_{li} + T_{ih}^{:l} F_{li} = 0.$$

This corresponds to the condition which was used to get the first connexion in the previous paper.

2. Consider again a contravariant vector u^h , and a covariant vector $F_{ih}u^h$ which contains the vector u^h . We transport the covariant vector $F_{ih}u^h$ parallelly with respect to the Riemannian connexion, and with respect to the affine connexion Γ^h_{ii} respectively from the point ξ^h to the point $\xi^h + u^h \varepsilon$ where ε is an infinitesimal.

Then we get at $\xi^h + u^h \varepsilon$

$$F_{ih} u^h - u^j \, \varepsilon \left\{ egin{aligned} l \ ji \end{aligned}
ight\} \, F_{lh} \, u^h$$

and

$$F_{\it ih}\; \it u^{\it h} - \it u^{\it j}\; \epsilon \left[\left\{ egin{matrix} l \ j_{\it i} \end{smallmatrix}
ight\} + T_{\it ji}^{\it \cdot \cdot l}
ight] F_{\it lh}\; \it u^{\it h} \, .$$

We assume that these two vectors coincide for any vector u^h . This condition can be expressed as

$$(3.4) T_{ji}^{il} F_{lh} + T_{hi}^{il} F_{lj} = 0.$$

This corresponds to the condition which was used to get the second connexion in the previous paper.

3. Now, if we assume that the autoparallel curves with respect to Γ_{ji}^{h} coincides with the geodesics of the Riemannian metric $ds^{2}=g_{ih}d\xi^{i}d\xi^{h}$, then we have

$$\Gamma_{(ji)}^h = \left\{ egin{aligned} h \ ji \end{aligned}
ight\}$$
,

which can be expressed by $T_{(ii)}^{\cdot \cdot h} = 0$ or by

$$(3.5) T_{ji}^{il} F_{lh} + T_{ij}^{il} F_{lh} = 0.$$

This corresponds to the condition which was used to get the third connexion in the previous paper.